Quantum-Inspired Differential Evolution with Grey Wolf Optimizer for 0-1 Knapsack Problem
نویسندگان
چکیده
The knapsack problem is one of the most widely researched NP-complete combinatorial optimization problems and has numerous practical applications. This paper proposes a quantum-inspired differential evolution algorithm with grey wolf optimizer (QDGWO) to enhance diversity convergence performance improve in high-dimensional cases for 0-1 problems. proposed adopts quantum computing principles such as superposition states gates. It also uses adaptive mutation operations evolution, crossover observation generate new solutions trial individuals. Selection are used determine better between stored individuals created by operations. In event that worse than current individuals, rotation gate preserve population well speed up search global optimal solution. experimental results confirm advantages QDGWO effectiveness capability problems, especially situations.
منابع مشابه
An adaptive quantum-inspired differential evolution algorithm for 0-1 knapsack problem
Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces. However, the design of its operators makes it unsuitable for many real-life constrained combinatorial optimization problems which operate on binary space. On the other hand, the quantum inspired evolutionary algorithm (QEA) is ver...
متن کاملGrey Wolf Optimizer
This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, enc...
متن کاملQuantum-Inspired Differential Evolution with Particle Swarm Optimization for Knapsack Problem
This paper presents a new hybrid algorithm called QDEPSO (Quantum inspired Differential Evolution with Particle Swarm Optimization) which combines differential evolution (DE), particle swarm optimization method (PSO) and quantum-inspired evolutionary algorithm (QEA) in order to solve the 0-1 optimization problems. In the initialization phase, the QDEPSO uses the concepts of quantum computing as...
متن کاملA Hybrid Quantum-inspired Artificial Bee Colony Algorithm for Combinatorial Optimization Problem: 0-1 Knapsack
This paper propose a new mixture method called Quantum Artificial Bee Colony (QABC) algorithm. QABC is based on some quantum computing concepts, such as qubits and superposition of states. In QABC these quantum concepts are applied on Artificial Bee Colony (ABC) algorithm. ABC is one of the recent algorithms in optimization area that has earned good popularity and some new works based on origin...
متن کاملAn Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9111233